

Directed Acyclic Graph Factorization Machines for CTR Prediction via Knowledge Distillation

Ting Bai^{*‡}

Zhen Tian Gaoling School of Artificial Intelligence, Renmin University of China Beijing, China chenyuwuxinn@gamil.com

al Beijing University of Posts and ity of Telecommunications Beijing, China baiting@bupt.edu.cn m Zibin Zhang

Zhiyuan Xu Weixin Open Platform, Tencent Guangzhou, China bingoozhang@tecent.com zhiyuanxu@tecent.com

Kangyi Lin Weixin Open Platform, Tencent Guangzhou, China plancklin@tecent.com Ji-Rong Wen[†] Gaoling School of Artificial Intelligence, Renmin University of China Beijing, China jrwen@ruc.edu.cn Wayne Xin Zhao[†] Gaoling School of Artificial Intelligence, Renmin University of China Beijing, China batmanfly@gmail.com

WSDM 2023 Code: https://github.com/RUCAIBox/DAGFM

Motivation

Details:

- With the growth of high-dimensional sparse data in web-scale recommender systems, the computational cost to learn high-order feature interaction in CTR prediction task largely increases, which limits the use of high-order interaction models in real industrial applications.
- However, they suffer from the degradation of model accuracy in knowledge distillation process. It is challenging to balance the efficiency and effectiveness of the shallow student models.

Problem Statement

(a) The architecture of DAGFM.

(b) The architecture of KD-DAGFM.

input feature
$$\mathbf{x} = \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_m\}$$

embedding features $\{\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_m\}$

$$\mathcal{L}_{CTR} = -\frac{1}{N} \sum_{i=1}^{N} \left(y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i) \right), \quad (13)$$

Table 2: Effectiveness comparisons of different student models. l is the depth, m is the number of feature fields, d is the embedding size, H is the dimension of hidden vectors.

Table 1: The statistics of datasets.

Dataset	# Features	# Fields	# Instances	
Criteo	1.3M	39	45M	
Avazu	1.5M	23	40M	
MovieLens-1M	13k	7	740K	
WeChat	2.9M	264	40.9M	

Distillation	Criteo		Avazu		Orden	Complexity	
	AUC	Log Loss	AUC	Log Loss	Order	complexity	
CIN	0.8109	0.4424	0.7816	0.3803	≥ 2	$O(mH^2 dl)$	
$CIN \rightarrow FwFM$	0.8008	0.4511	0.7779	0.3823	2	$O(m^2d)$	
$CIN \rightarrow FmFM$	0.8091	0.4445	0.7809	0.3806	2	$O(m^2d^2)$	
$CIN \rightarrow Tiny MLP$	0.8098	0.4506	0.7794	0.3839	NA	$O(mdH + H^2l)$	
$\text{CIN} \rightarrow \text{DAGFM-inner}$	0.8109	0.4425	0.7816	0.3803	≥ 2	$O(m^2 dl)$	
CrossNet	0.8123	0.4398	0.7817	0.3805	≥ 2	$O(m^2d^2l)$	
$CrossNet \rightarrow FwFM$	0.7945	0.4559	0.7690	0.3874	2	$O(m^2d)$	
$CrossNet \rightarrow FmFM$	0.8108	0.4411	0.7800	0.3811	2	$O(m^2d^2)$	
$CrossNet \rightarrow Tiny MLP$	0.8102	0.4516	0.7795	0.3837	_	$O(mdH + H^2l)$	
$CrossNet \rightarrow DAGFM\text{-}outer$	0.8122	0.4397	0.7815	0.3806	≥ 2	$O(m^2 dl)$	

Figure 2: The propagation graph of DAGFM. Each k-order feature interaction corresponds to a unique path with length k - 1 in the dynamic programming algorithm.

Figure 3: The loss curves in knowledge distillation process of different student models.

Table 3: Performance comparisons. Note that a higher AUC or lower Logloss at 0.001-level is significant for CTR prediction.

Madal	Criteo		Avazu		MovieLens-1M		WeChat				
widder	AUC	Log Loss	AUC	Log Loss	AUC	Log Loss	AUC	Log Loss	Params	FLOPs	Latency
FmFM	0.8112	0.4408	0.7744	0.3831	0.8864	0.3295	0.6593	0.2660	5.99M	9.44M	0.099 ms
FwFM	0.8104	0.4414	0.7741	0.3835	0.8815	0.3351	0.6702	0.2637	0.03M	1.11M	0.046 ms
xDeepFM	0.8122	0.4407	0.7821	0.3799	0.8913	0.3244	0.6712	0.2627	282.77M	3761.16M	0.588 ms
DCNV2	0.8127	0.4394	<u>0.7838</u>	0.3782	0.8946	0.3229	0.6683	0.2640	87.63M	87.63M	0.198 ms
FiBiNet	0.8126	0.4415	0.7837	0.3783	0.8860	0.3291	0.6681	0.2449	569.01M	587.76M	0.219 ms
AutoInt+	0.8126	0.4396	0.7832	0.3786	0.8937	0.3288	<u>0.6774</u>	0.2618	34.14M	64.92M	0.222 ms
FiGNN	0.8109	0.4412	0.7830	0.3799	0.8939	0.3232	0.6623	0.2641	9.91M	41.13M	0.323 ms
GraphFM	0.8070	0.4448	0.7792	0.3807	0.8890	0.3311	0.6532	0.2660	3.60M	1193.74M	0.192 ms
ECKD	0.8123	0.4422	0.7834	0.3838	<u>0.8951</u>	0.3173	0.6635	0.2672	25.44M	25.44M	0.108 ms
CIN (teacher)	0.8109	0.4424	0.7816	0.3803	0.8850	0.3320	0.6668	0.2636	231.96M	3710.57M	0.213 ms
DAGFM-inner (student)	0.8105	0.4413	0.7801	0.3805	0.8839	0.3339	0.6620	0.2651	1.75M	3.36M	0.068 ms
KD-DAGFM-inner	0.8109	0.4425	0.7816	0.3803	0.8849	0.3320	0.6668	0.2636	1.75M	3.36M	0.068 ms
KD-DAGFM _{FT} -inner	0.8121	0.4400	0.7883	0.3760	0.8880	0.3304	0.6777	0.2617	1.75M	3.36M	0.068 ms
CrossNet (teacher)	0.8123	0.4398	0.7817	0.3805	0.8907	0.3474	0.6681	0.2638	53.54M	53.54M	0.125 ms
DAGFM-outer (student)	0.8119	0.4401	0.7791	0.3810	0.8895	0.3361	0.6672	0.2646	3.42M	5.04M	0.086 ms
KD-DAGFM-outer	0.8122	0.4397	0.7815	0.3806	0.8904	0.3476	0.6680	0.2638	3.42M	5.04M	0.086 ms
KD-DAGFM _{FT} -outer	0.8132	0.4390	0.7864	0.3780	0.8976	0.3189	0.6748	0.2665	3.42M	5.04M	0.086 ms

Figure 4: The performance of KD-DAGFM with different number of propagation layers.

Figure 5: The performance of KD-DAGFM with different interaction learning functions.

Table 5: Distillation performance of KD-DAGFM+.

Table 4: Online A/B test results on WeChat Official Account Platform. Higher \uparrow is better for Click Users and CTR, while lower \downarrow is better for FLOPs and Latency.

Method	#Click Users ↑	CTR↑	FLOPs↓	Latency \downarrow
SOTA Method	1,532,276	0.09789	70M	0.158 ms
KD-DAGFM	1,533,351	0.09847	15M	0.059 ms
Improvements	+0.07%	+0.59%	+78.5%	+62.7%

Distillation		Criteo		Avazu			
Distillation	AUC	Log Loss	Latency	AUC	Log Loss	Latency	
xDeepFM (teacher)	0.8122	0.4407	0.251 ms	0.7821	0.3799	0.067 ms	
KD-DAGFM+	0.8122	0.4408	0.013 mc	0.7821	0.3801	0.011 ms	
$KD-DAGFM_{FT}+$	0.8132	0.4388	0.015 Ills	0.7870	0.3776		
DCNV2 (teacher)	0.8127	0.4394	0.021 ms	0.7838	0.3782	0.013 ms	
KD-DAGFM+	0.8126	0.4396	0.012 mc	0.7838	0.3784	0.007 mg	
$KD-DAGFM_{FT}+$	0.8134	0.4387	0.015 IIIS	0.7865	0.3775	0.007 ms	
AutoInt+ (teacher)	0.8126	0.4396	0.571 ms	0.7832	0.3786	0.332 ms	
KD-DAGFM+	0.8126	0.4396	0.012 mg	0.7831	0.3784	0.010 ms	
$KD-DAGFM_{FT}+$	0.8137	0.4385	0.015 IIIS	0.7875	0.3761		
FiBiNet (teacher)	0.8126	0.4415	0.124 ms	0.7837	0.3783	0.024 ms	
KD-DAGFM+	0.8125	0.4418	0.000 mc	0.7836	0.3786	0.008 mc	
KD-DAGFM _{FT} +	0.8131	0.4405	0.009 ms	0.7875	0.3768	0.008 IIIS	

Thanks